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ABSTRACT

We have developed a method of detecting extremely
weak signals using fundamental principles of chaotic
dynamics. We calculate the time-dependent
coupling of the disturbance signal to the stable and
unstable manifolds of the system and derive a
relationship between the disturbance and the error on
the Poincaré surface of section, thus relating the
disturbance signal to the perturbations needed to
control a periodic orbit. We demonstrate the
algorithm in a computer model of a chaotic system
and discuss its implementation in high-frequency
devices.

1. INTRODUCTION

Much interest has centered on the
observation of chaotic behavior in dynamical
systems.  Since the demonstration by Oftt,
Grebogi, and Yorke that chaotic dynamics can be
controlled using small perturbations', a large part
of the research in chaos has been related to
control, giving the promise of many useful
technologies being built upon this foundation.

Three fundamental aspects of chaotic
dynamics are as follows:* (1) a system behaving
chaotically is exponentially sensitive to small
changes, (2) within any chaotic attractor there
exists a dense set of unstable periodic orbits, and
(3) these periodic orbits can be controlled, or
stabilized, using small perturbations. We make
use of these three principles when developing this
approach for detection.

2. MATHEMATICAL DESCRIPTION

A mathematical system which has
become a paradigm for the study of chaotic
processes is the Rossler system.  Rdssler
developed this particular system of equations by
studying the folding action which occurred in a
mathematical system derived earlier by Lorenz’,
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It is described by a three dimensional system of
nonlinear ordinary differential equations which
are of the form,

x=-(y+2z)
y=x+ay
z=f+(x-p)z.

The solutions of this system plotted
parametrically in a cartesian coordinate system
trace out a sfate-space trajectory. The structure
in state-space that confines the trajectories is the
state-space attractor. For particular values of
the parameters @, f§ and 4, the system can have
chaotic solutions which reside on an attractor of
fractional dimension (a strange attractor).
Figure 1 is a plot of one such attractor for
parameters o = 0.2, #=0.4, and u=7.7.
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Figure 1. State-space attractor for the Rossler system for
a=02,=04and u=177.

The trajectories are stretched upwards
out of the x-y plane and then are folded back
down on to the plane. This stretching and folding
is typical of chaotic systems. This is descriptive
of a bounded instability which is possible in
nonlinear systems.

Controlling chaos, in the Ott, Grebogi,
Yorke (OGY) sense, is to apply small
perturbations to the system in order to stabilize
one of the many unstable periodic orbits buried
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within the chaotic motion. It is advantageous to
discretize the continuous time system by
Jjudicious placement of a two-dimensional surface
which cuts through the trajectories. This surface
is called the Poincaré surface of section (see fig.
2). This allows periodic trajectories, or orbits, to
be described by points on the surface.
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Figure 2. State-space trajectory intersecting the Poincaré
surface of section.

We will designate (xj,yj,zj) as a

period-/ point on the Poincaré surface of section
(PSS). A trajectory passing arbitrarily close to
this point will follow a period-j orbit. The period
of the oscillation, , is simply the time it takes the
trajectory to make a complete orbit and return to
the period-j point. In OGY control, we seek to
cause the orbits to continuously pass through the
periodic point(s) on the surface of section that we
desire. The control perturbations are applied at
the surface of section and are proportional to the
error between the true trajectory crossing and the
periodic point. If our system is described by

§=F(s) then p, o€ &, pss =

atPss ~ sj'atPSS .

If we assume that we will operate on or
near periodic orbits we can analyze the stability
of the system by solving the eigenvalue problem
for the Jacobian matrix’. That is, Je = Ae,

where
0 -1 -1
J=|1 «a 0
z 0 x—u

1884

The solution of det(J ——IA) =0 gives a cubic

equation of the form ,

A +a(x,z)A* + b(x,z)A +¢(x,z) = 0.

Notice that the Jacobian is dependent upon x and
z, thus giving us time-varying stability solutions.
We get eigenvalues A, A,, A, and eigenvectors
e;, e; and e;. In general A, can be complex. If
Re(A,)>1 anywhere then we have unstable

motion along the trajectory. We can go further by
casting the error in a basis derived from the
eigenvectors. If w, is a unit vector in the
direction of the eigenvector e, then we can find a
component of the error in this eigen-direction by
£, =&-u, . Now we have a component of the

error in the direction of each eigenvector. We
also want to quantify the expansion or
compression of the error (stability) in terms of
exponential coefficients. We can do so by letting
A, =lnA,.

Our primary question is this: Can we
determine a time-dependent disturbance signal
from an accumulated error on the surface of
section? If we have some time-dependent
disturbance d(f) being coupled into the system
then we also can find components of this
disturbance in the eigen-directions as
d.(t)=d(#)-u,(f). From an experimental
standpoint, we would have to determine the
strength and direction of the coupling through
measurement. For the sake of a mathematical
model we can simply say §=F(s)+d. Since
we are detecting extremely small signals, the
addition of d does not significantly alter the
system. For simplicity’s sake we will consider
the influence of d as coming from only one eigen-
direction. We look at d(f) fort=0tot=17. We
can consider d(f) as a superposition of Dirac
delta functions in time (see fig. 3). In other
words, d,(t)= D,5(t—1'). If we derive an

=

impulse response of the system to unit delta
function, we can approach the analysis as being
analogous to a Green’s function problem. A unit
delta function is expanded or compressed along
the direction w; exponentially by the factor 4. So
then an impulse response in the direction u; is

just, A, (f)=e**'. The component of the error



with respect to a given periodic orbit due to a
disturbance in an eigen-
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Figure 3. Disturbance signal di(f) as a superposition of
Dirac delta functions.
direction is determined by,

£,(0)=d, (t)*h, (1) = [d, ()" dr. Tt is
0

sufficient, although not complete, to consider
only the direction of the error expansion (or the
unstable direction, where Re(l k) >0). For
application to devices, one would desire that the
disturbance be coupled to the system primarily in
the unstable direction.

We will demonstrate our idea using a
linear disturbance described by,

d(®)= (Dat+Db)u1. We will assume that we

have a constant, real expansion coefficient 4; in
the u, direction. So then

£,(7) = [(D,t + D, )e"at
0

=y, D, +y,D,, where

_ 1 }.,t
Y -—/1-%—( 1-4,7), and
1 V4
1 =Z(e —l).
Now d,(0)=D, =¢,(0). So then the

disturbance, di(f) is completely specified by the
intercept Dy = 6‘1(0) and the slope
)

D“ = R & (T)

(" -1-27)
As stated earlier, controlling chaotic trajectories
through periodic orbits can be achieved by
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applying a small perturbation pulse at the surface
of section. If we are considering only one
direction, namely the unstable direction, then the
perturbation applied in the unstable direction is
proportional to the error in the unstable direction.
For our example,

P, = px(“') = pl(T)ul =V& (T)“r

So then
b A |a@_("-)p0
a (e/hr _1_/111,) v, ﬂ,] v,
and,
D, = Vi p,(0). The disturbance signal is
1

completely specified by the observed perturbation
needed to maintain a periodic orbit. At each
surface crossing the error is corrected by the
perturbation and information about another z-
length section of the disturbance signal is given.
After several crossings we can piece together the
complete disturbance signal.

We have developed the basis for
completely  resolving a  time-dependent
disturbance signal that is slowly varying
compared to the period of the chaotic oscillator.
Signals not slowly varying can be resolved
through methods such as: strict de-convolution,
higher-order disturbance signal approximation
functions, gating at the surface of section which
would lead to near-Nyquist sampling limitations.
We are exploring these issues at this time.

From an experimental and/or design
standpoint,  the time-dependent expansion-
compression coefficients and their corresponding
directions can be determined through
measurement.  Analog techniques have been
developed which allow control and stabilization
of periodic orbits in high-frequency chaotic
devices.* In the microwave regime, similar
techniques can be used for the design of
microwave frequency detection (sensor) devices.

3. MODEL RESULTS
We developed a computer model using a
chaotic system derived from an electrical
oscillator. The double-scroll oscillator is a
simple negative differential resistance oscillator



circuit which can be described by the following
system of equations:

le)C, = (vc2 — Ve, )G -8 (vc, )
Cyve, =(ve, —ve, )G +i,
Lip =-v,

where g(v) is a piece-wise negative differential

resistance element. The circuit is capable of
Réssler-type behavior for certain values of C,
C,, L and G. We applied control perturbations in
the unstable direction to control a period-one
orbit (see fig. 4).
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Figure 4. Period-one orbit controlled using perturbations
applied at vcz =0.

We also implemented a tracking
algorithm which sequentially corrected the
periodic-point on the surface of section. This
served to significantly reduce the magnitude of
the control perturbations. At the 50® surface
crossing we turned off the tracking and turned on
a sinusoidal disturbance signal

d(t)= Asin(—zﬁt) , where 4 =10" and 7, =
T4

1007. The period 7; was sufficient to give an
approximately linear relationship to d(r) from
surface crossing to surface crossing. Figure 5
shows the results of the simulation. It shows that
the influence of the disturbance signal is
impressed upon the control perturbations. The
expression derived earlier gives a scaling
function which will return the actual value of the
disturbance.
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Figure 5. Control perturbations (x10!) versus surface of
section crossing. Disturbance turned on at n = 50.

4. CONCLUSION

We have described the basic formalism
for detection of weak signals using the controlled
orbits of a chaotic system. We make use of the
inherent exponential sensitivity of chaotic
dynamics to small changes, the density of
unstable periodic orbits within the chaotic
behavior, and the techniques developed to control
chaotic trajectories through these periodic orbits.
We demonstrated the detection using a period-
one orbit. Making use of higher period orbits
would bring greater sensitivity and flexibility to a
proposed detection device. Chaotic behavior has
been observed and quantified experimentally in
different microwave systems.>® The techniques
outlined here are general in nature and can be
implemented in microwave systems using analog
control techniques. We must also explore the
fundamental limitations upon disturbance signal
variation with respect to the period of the
controlled chaotic orbit. Therein lies elements of
sampling and filter theory.
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