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ABSTRACT

We have developeda method of detecting extremely
weak signalsusing fundamental principles of chaotic
dynamics. We calculate the time-dependent
coupling of the disturbancesignal to the stable and
unstable manifolds of the system and derive a
relationship betweenthe disturbanceand the error on
the Poincar4 surface of sectio~ thus relating the
disturbance signal to the perturbations needed to
control a periodic orbit. We demonstrate the
algorithm in a computer model of a chaotic system
and discuss its implementation in high-frequency
devices.

1. INTRODUCTION

Much interest has centered on the

obsewation of chaotic behavior in dynamical

systems. Since the demonstration by Ott,

Grebogi, and Yorke that chaotic dynamics can be

controlled using small perturbations, a large part

of the research in chaos has been related to

control, giving the promise of many useful

technologies being built upon this foundation.

l%ree fimdamental aspects of chaotic

dynamics are as follows:2 (1) a system behaving

chaotically is exponentially sensitive to small

changes, (2) within any chaotic attractor there

exists a dense set of unstable periodic orbits, and

(3) these periodic orbits can be controlled, or

stabilized, using small perturbations. We make

use of these three principles when developing this

approach for detection.

2. MATHEMATICAL DESCRH’TIOIN

A mathematical system which has

become a paradigm for the study of chaotic

processes is the Rossler system. Rossler

developed this particular system of equations by

studying the folding action which occurred in a

mathematical system derived earlier by Lorenz3.

It is described by a three dimensional system of
nonlinear ordinary differential equations which
are of the form,
i=–(y+z)

j=x+oy
Z=p+(+z.

The solutions of this system plotted

parametrically in a cartesian coordinate system

trace out a state-space trajectory. The structure

in state-space that confines the trajectories is the

state-space attractor. For particular values of
the parameters ~ /3 and P, the system can have
chaotic solutions which reside on an attractor of
fractional dimension (a strange attractor).

Figure 1 is a plot of one such attractor for
parameters u = 0.2, /3= 0.4, and P = 7.7.

Figure 1. State-spaceattractor for the RLisslersystemfor
a = 0.2, ~ = 0.4 and p = 7.7.

The trajectories are stretched upwarda

out of the x-y plane and then are folded back

down onto the plane. This stretching and folding

is typical of chaotic systems. This is descriptive

of a bounded instability which is possible in

nonlinear systems.

Controlling chaos, in the Ott, Grebogi,

Yorke (OGY) sense, is to apply SIIKJ1

perturbations to the system in order to stabilize

one of the many unstable periodic orbits buried
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within the chaotic motion. It is advantageous to

discretize the continuous time system by

judicious placement of a two-dimensional surface

which cuts through the trajectories. This surface

is called the Poincart! surface of section (see fig.

2). This allows periodic trajectories, or orbits, to

be described by points on the surface.

Tz

4+&sJ@)
,
(xj$j9zj )

+

Poincar4 surface
Y

Figure 2. State-spacetrajectory intersectingthe Poincrd
surfaceof section.

( )We will designate Xj, y,, Zj as a

period-j point on the Poincar6 surface of section
(PSS). A trajectory passing arbitrarily close to

this point will follow a period~ orbit. The period

of the oscillation, q is simply the time it takes the

trajectory to make a complete orbit and return to

the period-j point. In OGY control, we seek to

cause the orbits to continuously pass through the

periodic point(s) on the surface of section that we

desire. The control perturbations are applied at

the surface of section and are proportional to the

error between the true trajectory crossing and the

periodic point. If our system is described by

s = F(s) then pn Ms ~tpss =s ,tpss – Sj ,tp~~.

If we assume that we will operate on or
near periodic orbits we can analyze the stability
of the system by solving the eigenvalue problem
for the Jacobian matnx2. That is, Je = Ae,

where

!1
o –1 –1

J=luO.

z o x–p

The solution of det(J – IA) = O gives a cubic

equation of the form,

A3 + a(x,z)/i2 + b(x,z)fi + C(X,Z) = 0.

Notice that the Jacobian is dependent upon x and

z, thus giving us time-varying stability solutions.

We get eigenvalues Al, A2, As and eigenvectors

e], e’ and es. h general Ak can be complex. If

Re(A~) >1 anywhere then we have unstable

motion along the trajectory. We can go fiu-ther by
casting the error in a basis derived from the
eigenvectors. If w is a unit vector in the
direction of the eigenvector ek,then we can find a
component of the error in this eigendirection by
&k=&”uk. Now we have a component of the

error in the direction of each eigenvector. We

also want to quanti~ the expansion or

compression of the error (stability) in terms of

exponential coefficients. We can do so by letting

A~=ln Ak.

Our primary question is this: Can we

determine a time-dependent disturbance signal

from an accumulated error on the surface of

section? If we have some time-dependent

disturbance d(t) being coupled into the system

then we also can find components of this

disturbance in the eigen-directions as

ci~(i) = d(t). Uk(t) . From an experimental

standpoint, we would have to determine the

strength and direction of the coupling through

measurement. For the sake of a mathematical

model we can simply say s = F(s)+ d. Since

we are detecting extremely small signals, the

addition of d does not significantly alter the

system. For simplicity’s sake we will consider

the influence of d as coming from only one eigen-

direction. We look at dk(t) for t = O to t = z We

can consider d~(t) as a superposition of Dirac
delta fimctions in time (see fig. 3). In other

words, d~ (t) = ~ ll~,d(t – t’). If we derive an
t’

impulse response of the system to unit delta

function, we can approach the analysis as being

analogous to a Green’s fimction problem. A unit

delta fimction is expanded or compressed along

the direction uk exponentially by the factor ~. So

then an impulse response in the direction uk is

just, hk (t)= eAi’. The component of the error
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with respect to a given periodic orbit due to a

disturbance in an eigen-

1dk(t)

Figure 3. Disturbancesignal d~t) asa supposition of
Dim delta functions.

direction is determined by,

E~(r)= d~ (t)*hb (t) = ~d~ (t)edk(r-t)dt. It is
o

sufficient, although not complete, to consider
only the direction of the error expansion (or the

unstable directio~ where Re(l~ ) > O). For

application to devices, one would desire that the

disturbance be coupled to the system primarily in

the unstable direction.

We will demonstrate our idea using a

linear disturbance described by,

d(i) = (~at +@U1 . We will assume that we

have a constant, real expansion coefficient 21 in

the u, direction. So then

S1(r)= ](Dat + D~)eA’(7-t)dt,
o

= Y .D. -!- Y ~Db, where

y. =~(e2° -l- A1~), and
1

y, ‘+(e’+
I

Now d,(o) = D, = g](o). So then the

disturbance, d](t) is completely specified by the

intercept Db = s1(0) and the slope,

As stated earlier,
through periodic

controlling chaotic trajectories

orbits can be achieved by

applying a small perturbation pulse at the surface
of section. If we are considering only one
direction, namely the unstable direction, then the
perturbation applied in the unstable direction is

proportional to the error in the unstable direction.
For our example,

PI* = Pl(d = A(+ = K+)%.

So then

D.=
A;

( [

p,(t) (e’” - 1) p,(o)——
eA’r - l-AIT) v, 21 v, 1

and,

Db = ;p,(()) . The disturbance signal is
1

completely specified by the observed perturbation

needed to maintain a periodic orbit. At each

surfiace crossing the error is corrected by the

perturbation and information about another r-

Iength section of the disturbance signal is given.

Afler several crossings we can piece together the

complete disturbance signal.

We have developed the basis for

completely resolving a time-dependent
disturbance signal that is slowly varying

compared to the period of the chaotic oscillator.

Signals not slowly varying can be resolved

through methods such as: strict de-convolution,

higher-order disturbance signal approximation

fimctions, gating at the surface of section which

would lead to near-Nyquist sampling limitations.

We are exploring these issues at this time.

From an experimental and/or design

standpoint, the time-dependent expansion-

compression coefficients and their corresponding

directions can be determined through
measurement. Analog techniques have been

developed which allow control and stabilization

of periodic orbits in high-frequency chaotic

devices.4 In the microwave regime, similar

techniques can be used for the design of

microwave frequency detection (sensor) devices.

3. MODEL RESULTS

We developed a computer model using a

chaotic system derived from an electrical
oscillator. The double-scroll oscillator is a

simple negative differential resistance oscillator
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circuit which can be described by the following

system of equations:

C,ticl= (Vc, )–vc, G – g(vc, )
)C2$C2=(vC, – VC2G+ i~

where g(v) is a piece-wise negative differential

resistance element. The circuit is capable of

Rossler-type behavior for certain values of Cl,

Cz, L and G. We applied control perturbations in

the unstable direction to control a period-one

orbit (see fig. 4).

~..., . . . . . . . . . . . ..l
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Figure 4. Period-one orbit controlled using perturbations

applied at VC2= O.

We also implemented a tracking

algorithm which sequentially corrected the

periodic-point on the surface of section. This

served to significantly reduce the magnitude of

the control perturbations. At the SO* surface

crossing we turned off the tracking and turned on

a sinusoidal disturbance signal

L )a!(t) = A sin ‘t , where A = 10-*1 and rd =
~“~d J

100z The period ~d was sufficient to give an

approximately linear relationship to d(t) from

surface crossing to surface crossing. Figure 5

shows the results of the simulation. It shows that

the influence of the disturbance signal is

impressed upon the control perturbations. The

expression derived earlier gives a scaling

function which will return the actual value of the

disturbance.
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Figure 5. Control perturbations (X10-”) versus surface of

section crossing. Disturbance turned on at n = 50,

4. CONCLUSION

We have described the basic formalism
for detection of weak signals using the controlled
orbits of a chaotic system. We make use of the
inherent exponential sensitivity of chaotic
dynamics to small changes, the density of
unstable periodic orbits within the chaotic
behavior, and the techniques developed to control
chaotic trajectories through these periodic orbits.
We demonstrated the detection using a period-
one orbit. Making use of higher period orbits
would bring greater sensitivity and flexibility to a
proposed detection device. Chaotic behavior has
been observed and quantified experimentally in
different microwave systems.5’G The techniques
outlined here are general in nature and can be
implemented in microwave systems using analog
control techniques. We must also explore the
fimdamental limitations upon disturbance signal
variation with respect to the period of the
controlled chaotic orbit. Therein lies elements of
sampling and filter theory.
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